
The Marriage of WinG and MFC
By Paul Modzelewski and György Grell

This document is Copyright © 1995 Paul Modzelewski and Gyorgy Grell. This article may not be reprinted
without the permission of either of the authors. (Hey we’ll probably say sure, but we want to know about it).

The source code in the article and the accompanying MSVC 1.5 project is free for anyone to use in their
application. Please feel free to e-mail us if you have any questions, answers, comments, etc.

The Marriage of WinG and MFC
By Paul Modzelewski and György Grell

WinG, the new high-performance graphics library from Microsoft,
brings to Windows 3.1 raw blitting speeds approaching those of MS-
DOS. WinG is a very simple library, with one purpose, and one
purpose only: fast blitting. All other functionality, such as sprites,
must be added by you, the masochistic Windows programmer.
Wouldn't it be nice to isolate all the WinG drudgery inside C++ classes
and never think about it again? We thought so.

We set out to write some basic MFC classes to enable sprite based
animation with WinG. A good starting point was the DOGGIE sample
included with WinG. We extended its functionality by creating
animated sprite objects, simplified creation of identity palettes with
our own palette object, and created a class for handling DIBs. Our final
application has an animated sprite (the word “WinG” rotating) which
can be moved around with the mouse. Unlike Microsoft, we clean up
after our “Doggie”, erasing each frame and leaving no trails.

We will cover basic WinG concepts lightly. For a detailed description of
WinG you should refer to the help file that comes with WinG itself,
which is readily available on both CompuServe and the internet
(ftp.microsoft.com:/developr/drg/WinG/wing10.zip)

What is WinG?
WinG is simply an offscreen buffer which has functions to get that
buffer to your screen as fast as possible. WinG contains ten functions,
most of which manipulate the new device context, WinGDC, which
works in tandem with the new bitmap, WinGBitmap, to form the
buffer.

WinG allows you to get a pointer to the actual bits of the WinGBitmap
selected into the WinGDC, and this ability makes the
WinGDC/WinGBitmap combo very much like a Device Independent
Bitmap (DIB). Once your image is composed in the offscreen buffer,
you use WinGBitBlt or WinGStretchBlt to copy it to a display device
context extremely rapidly. This is what WinG does well, and it does it
very well. Unfortunately, that is the easy part.

The hard part is quickly composing your image in the offscreen buffer.
Since the buffer is basically a DIB, what you need is a way to copy all
or some of a DIB into another DIB. You could use standard Windows
GDI calls to do this, but GDI's convenient device-independence is also
painfully slow when it comes to blitting DIBs. This means you will

have to write your own blitting routine, which is basically a fancy
memcpy. Depending on the needs of your application, you may also
want to write your own fast drawing routines (i.e. polygons, texture
mapping, fractal drawing, etc.)

What we did
We considered several designs, and decided that WinG itself doesn’t
need to be wrapped into a class because it is so simple. The main
difficulties in using WinG are palette control and DIB manipulation. We
built the CWinGPalette and CDib classes to handle these issues. In
addition, we created CSprite and CPhasedSprite to manage movement
and animation of sprites.

Since we didn’t need the extra overhead of the document/view
architecture, we implemented all of our application’s work in the
CMainFrame class. This includes setting up WinG, responding to
window messages, drawing, and data storage.

Just before we wrote this article, Microsoft released yet another tool,
WinToon. WinToon is a library that uses WinG and Video for Windows
to do some neat tricks with animation. However, included with
WinToon is a wonderful set of 32-bit assembler blitting routines, and a
bunch of nice DIB management routines as a bonus (WinToon is
available at
ftp.microsoft.com:/developr/drg/Multimedia/WinToon/wintoon.zip).

Being “efficient”, we decided to use WinToon's DIB routines. These are
the base of CDib’s functionality. In addition, the 32-bit functions are
used in the CSprite class. All these functions are nicely packaged into
llibdib.lib (Hey, we didn’t name it!) The DIB management function
prototypes are in dib.h, and the 32-bit assembler function prototypes
are in dibfx.h. There is other cool stuff in there that we didn’t even
touch. Check it out.

CWinGPalette
We soon realized that the first thing to tackle was identity palettes.
The identity palette concept is probably the most important and
difficult part of understanding and using WinG. An identity palette is a
Windows palette object that exactly matches the hardware palette in
your video card. If you don't have an identity palette, WinG will have
to translate every pixel in your image as it displays it. This is
stunningly slow.

To get an identity palette in WinG, you must make sure that the color
table in your WinGBitmap and the palette selected into the display
device context you are drawing on both match the hardware palette

exactly. This can be a tedious affair, at best, and is nicely hidden in
CWinGPalette.

CWinGPalette descends from MFC's CPalette class, and adds all the
functionality required to set up an identity palette from a series of
bitmaps. WinG only supports eight bits per pixel, therefore we only
have 256 colors to work with. Windows has twenty static colors that it
uses for titlebars and such. Since we do not want to change these
colors, we will need to put these into our own palette. In
CWinGPalette’s constructor, the twenty static system colors are
grabbed from the system, and stored in the internal palette structure.
This means we only have 236 colors available for our own use.

CWinGPalette has only four methods:
 int AddQuad(LPRGBQUAD pRgbQuad, BOOL bCollapse = TRUE);
 void AddColors(CDib& dib, BOOL bScanPixels, BOOL bCollapse = TRUE);
 void CopyQuadsTo(LPRGBQUAD lpRgbQuads, int nNumColors = 256);
 void CreatePalette();

AddQuad lets you add a single RGBQUAD to the palette. An RGBQUAD
is a standard Windows structure which is four bytes long. It contains a
byte each for red, green, and blue color values, and an additional
reserved byte. When you add an RGBQUAD, the function scans the
existing colors to make sure there is no duplication. Since we are
using the PC_NOCOLLAPSE flag to make sure Windows doesn’t remove
duplicates for us, we do it ourselves in a controlled manner.
Sometimes you may not want to eliminate duplicates from your
palette. Setting the bCollapse parameter to FALSE will prevent
AddQuad from scanning for duplicate colors. If successful, AddQuad
returns the palette index of the color you are attempting to add,
otherwise it will return ERR_PALETTEFULL (our own error value). If
your new color already exists and bCollapse is TRUE, AddQuad will not
add the color, but it will return the palette index that matched your
new entry.

The AddColors function operates in one of two ways, depending on the
value of the bScanPixels parameter. When bScanPixels is FALSE all the
colors in the DIB’s palette are copied into the CWinGPalette, dropping
any values after reaching 236 colors. If bScanPixels is TRUE, we don’t
trust the DIB’s header and scan each of the DIB’s pixels to see which
colors are actually used. Checking every pixel is a serious
performance hit, but we decided to add this functionality since it
would be handy in a palette editing program. Generally, in a game or
other high performance program, you would load a precreated palette
from a file.

CopyQuadsTo simply copies the requested number of colors from the
palette to an array of RGBQUADs. This is the function we use to set
the palette of the WinGBitmap once we have created our application’s
palette.

CreatePalette is an override of MFC’s CPalette::CreatePalette (thank
Microsoft for not making this function virtual) and creates the
Windows palette object. We use this function in CMainFrame during
the setup of WinG.

CDib
Next up is the CDib class. MFC does not contain any classes to aid in
the management of DIBs, so we wrote our own. CDib descends from
CObject (the ancestor of almost all MFC classes), and uses the DIB
management routines from WinToon as the base of its functionality.
Included are member functions to load a DIB, get the width and height
of the DIB and access the bitmap’s bits. The ones we will discuss are:
 BOOL Load(LPSTR fileName);
 void MapToPalette(CPalette& palette);

The DIBs can be stored either in files or as resources. Load will assume
that the string passed to it identifies a file. If it can’t find that file, it
will try to load a resource with that string name. This is a feature that
came free with the WinToon DIB functions.

Figure 1

Now that we have some DIBs loaded into memory, and a palette
created from them, we need to make sure the bitmaps’ colors match
the palette’s. This is accomplished with the MapToPalette function.
This method gets the colors from the palette, and matches the
bitmap’s colors to the palette’s, as illustrated in Figure 1. This way you
won’t end up having an oddly colored picture.

CSprite and CPhasedSprite
CSprite descends from CObject, and is used to store both position
information and a CDib pointer. The position information is stored in
the form of two CRects, m_rect and m_prevRect. The sprites latest
position is stored in m_rect, and its previous position is stored in
m_prevRect.
 void DrawSprite(LPBITMAPINFOHEADER lpBIH, LPBYTE lpByte, int nTransColor);
 void EraseSprite(LPBITMAPINFOHEADER lpBIH, LPBYTE lpByte, CDib& background);

The DrawSprite member function of CSprite uses the DibTranparentBlt
function from WinToon to draw the sprite’s bitmap. The bitmap will be
drawn into the DIB bits identified by lpByte (usually your WinGBitmap)

in the position marked by m_rect. All pixels with the value of the
nTransColor parameter will be ignored by DrawSprite, making these
pixels “transparent”, since they will not show up in the destination.

EraseSprite works much like DrawSprite, with two major differences.
First, instead of drawing the sprites bitmap in m_rect’s location, it will
draw with the CDib indicated by the background parameter in
m_prevRect’s location. Second, it does not deal with transparency at
all and uses DibBlt instead of DibTransparentBlt.

Descending from CSprite is CPhasedSprite. A CPhasedSprite is a sprite
with different phases, basically, it is a frame animated sprite.
CPhasedSprite differs from CSprite by storing an array of pointers to
DIBs, and exposing member functions that allow changing between
frames.

Setting up WinG
The following is our WinG setup function in CMainFrame. The first
step in setting up WinG is calling WinGRecommendDIBFormat. When
the WinG DLL is loaded for the first time on a particular display
setting, it will do extensive profiling of your display hardware,
determining the fastest DIB format on your machine. Calling
WinGRecommendDIBFormat will return this format.
 // Get WinG to recommend the fastest DIB format
 if(WinGRecommendDIBFormat((BITMAPINFO*)&m_bufferHeader))
 {
 // make sure it's 8bpp and uncompressed
 m_bufferHeader.bih.biBitCount = 8;
 m_bufferHeader.bih.biCompression = BI_RGB;
 }
 else
 {
 // set it up ourselves since nothing was recommended
 m_bufferHeader.bih.biSize = sizeof(BITMAPINFOHEADER);
 m_bufferHeader.bih.biPlanes = 1;
 m_bufferHeader.bih.biBitCount = 8;
 m_bufferHeader.bih.biCompression = BI_RGB;
 m_bufferHeader.bih.biSizeImage = 0;
 m_bufferHeader.bih.biClrUsed = 0;
 m_bufferHeader.bih.biClrImportant = 0;
 }
 m_bufferHeader.bih.biWidth = m_nDispWidth;
 // Retain the orientation
 m_bufferHeader.bih.biHeight *= m_nDispHeight;

If WinGRecommendDIBFormat returns FALSE, we do our own setup of
the DIB format.
We’ve never seen this happen, but you never know. The next step in
our setup function is to prepare and create our palette. The first step
in creating our palette is to call the CWinGPalette function AddColors
for every bitmap we intend to use. This will fill the palette with all the
used colors in each bitmap (provided there are less than 236 total
colors). After we create the palette, we remap all the bitmaps’ colors

to this new palette. See Figure 1 for more information on the
remapping process.
 // Load the palette with colors from bitmaps, then create it
 m_palette.AddColors(*(CDib*)m_dibs[0], TRUE);
 m_palette.AddColors(m_background, TRUE);
 m_palette.CreatePalette();

 // Remap the existing bitmaps' colors to the new palette
 m_background.MapToPalette(m_palette);
 for(int nIndex=0; nIndex < 30; nIndex++)
 ((CDib*)m_dibs[nIndex])->MapToPalette(m_palette);

Now that we have created a palette from the colors of all our bitmaps,
we use the CopyQuadsTo function of CWinGPalette to copy those
colors into the header of a WinGBitmap. This is how we create an
identity palette, letting CWinGPalette do all the work for us. Once
m_palette is realized, the system palette, our application’s logical
palette, and the color table of our WinGBitmap will all match, giving us
an identity palette.
 // Fill the WinGBitmap's header with the colors
 m_palette.CopyQuadsTo(m_bufferHeader.aColors);

The final few steps of setting up WinG are the creation of a WinGDC
and a WinGBitmap, and selecting the bitmap into the DC, like so...

 // Create a WinGDC and Bitmap
 m_hWinGDC = WinGCreateDC();
 HBITMAP hBitmap = WinGCreateBitmap(
 m_hWinGDC,
 (BITMAPINFO*)&m_bufferHeader,
 &m_pDispBuffer);

 // Store the old bitmap to select back in before deleting
 m_hOldBitmap = (HBITMAP)::SelectObject(m_hWinGDC, hBitmap);

You’ll notice that we store the original bitmap contained in the
WinGDC, so we can restore it before we quit our app. It is important
to remember that a WinGDC is still a device context. This means you
can use GDI to write on it, and it follows most of the same rules as
every other DC.

A day in the life of CMainFrame
Okay, now that WinG is all set, what to do with it? The first thing we
have to do is select and realize our CWinGPalette, m_palette, into our
display device context, m_pDC. It is important to mention that we
hold m_pDC for the life of our application, creating it in
CMainFrame::OnCreate, and destroying it in CMainFrame’s destructor.
This way we won’t need to create a new DC object each time we use
WinGBitBlt.

The selection and realization of our palette happens in OnSetFocus in
CMainFrame. When we lose focus, another application could change

the palette, so this will ensure that we always have an identity palette
when we are the active app.
void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 CFrameWnd::OnSetFocus(pOldWnd);

 m_pDC->SelectPalette(&m_palette, FALSE);
 m_pDC->RealizePalette();

 // start the timer
 m_nTimerID = 1000;
 SetTimer(m_nTimerID, 1, NULL);
}

The last thing we do in OnSetFocus is start the standard Windows
timer. The standard Windows timer is only good for about 18 ticks per
second. If you want a higher resolution timer you’ll have to use the
Windows multimedia timer services. We stop the timer in OnKillFocus.
We used Class Wizard to create the function OnTimer, which is called
every time the timer ticks.
void CMainFrame::OnTimer(UINT nIDEvent)
{
 // Step to its next frame
 m_pSprite->NextFrame();

 // Clear the old area of the sprite with the background bitmap
 m_pSprite->EraseSprite(
 (LPBITMAPINFOHEADER)&m_bufferHeader,
 (LPBYTE)m_pDispBuffer,
 m_background);

 // Draw the sprite in the new position
 m_pSprite->DrawSprite(
 (LPBITMAPINFOHEADER)&m_bufferHeader,
 (LPBYTE)m_pDispBuffer,
 0);

 // Take the union of the previous rect and the new rect and blit that
 // area onto the window
 CRect updateRect;
 updateRect.UnionRect(m_pSprite->GetPrevRect(), m_pSprite->GetRect());
 WinGBitBlt(
 m_pDC->GetSafeHdc(),
 m_nXOffset + updateRect.left,
 m_nYOffset + updateRect.top,
 updateRect.Width(), updateRect.Height(),
 m_hWinGDC,
 updateRect.left, updateRect.top);

 m_pSprite->SetPrevRect();
}

This function is the heart of our application. You can see that the first
thing we do is call CPhasedSprite::NextFrame, which sets the sprite’s
DIB to the next in the series. The next step is to redraw the
background in the position where the sprite used to be, by calling
EraseSprite. Once the sprite is erased, we redraw it in its new position
with DrawSprite.

Figure 2

It is important to understand that at this point we still haven’t copied
anything to the screen, yet. All the blitting we have done so far was
onto our offscreen buffer, the WinGDC. Performing image composition
in an offscreen buffer, and then blitting the finished image onto the
screen reduces flicker and provides smoother animation. This is called
“double buffering”, and is illustrated in Figure 2.

To get these images onto the screen, we’ll use WinGBitBlt. We could
simply blit the entire offscreen buffer onto the display every time we
moved or changed the sprite, but this would be extremely inefficient.
To minimize the amount of data we must send to the screen, we will
union the sprites current and previous rectangles, giving us the
smallest possible rectangle that must be updated.

We do basically the same thing in OnMouseMove that we do in
OnTimer. When the left mouse button is clicked, CMainFrame will
check to see if the hit fell within the bounds of the sprite. If it does,
moving the mouse around causes the sprite to move, until the left
button is released. You can use a right double-click or the escape
button to exit the application.

Wrapping Up
As we have shown, using MFC and high-performance graphics are not
mutually exclusive. It is even possible to get frame rates fast enough
for arcade games using modified versions of the code we have
supplied. The biggest obstacles to high-performance C++ are
constructors. Be aware of when your compiler will silently call them,
and learn how to avoid those situations.

We have tried to make our classes as extensible as possible, and we
feel they are a good start at a WinG class library. A “good start” is a
long way from complete, though, and there are many specific things
that you may want to add. At the very least, reading and
understanding all of our source code should give you a firm grasp of
WinG fundamentals, and some decent tools to help you along your
way.

Paul Modzelewski works for Magnet Interactive Studios, where he
specializes in Windows multimedia and 3DO game programming in C+
+. He can be reached at pmodz@magnet.com .

Gyorgy Grell works for MLJ, Inc., where he specializes in Windows GDI
and GUI programming in MFC/C++ and SDK/C. He can be reached at
gsoft@netcom.com

	What is WinG?
	What we did
	CWinGPalette
	CDib
	CSprite and CPhasedSprite
	Setting up WinG
	A day in the life of CMainFrame
	Wrapping Up

